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Abstract Object-oriented programming, as an alternative to traditional, procedural
programming methods for finite element analysis, is growing rapidly in importance as
algorithms and programs become more complex. This paper reviews some of the literature and
seeks to explain some of the concepts of object-oriented thinking most useful to the finite element
programmer, using as an example a C++ implementation of a heat transfer and solidification
program.

1. Introduction
Even relatively simple finite element programs can be quite complex pieces of
software, and the highest code writing standards are required if one developer's
work is to be understood and re-used successfully by another. This is
exacerbated by the incorporation of more sophisticated algorithms and by the
desire for increased usability and robustness, which, perversely, makes it even
more important that software developers can share and re-use code.

Most finite element programs are written in procedural languages (like
Fortran or C) in which the finite element algorithm is broken down into
procedures (functions, subroutines etc.) that manipulate data (numbers,
character strings, vectors, matrices etc.). Every time a procedure is used, the
user (the code that calls it) must provide it with the correct data, which
generally requires that the user knows not just what the procedure does, but
how it does it. As procedures become more complex and their interactions
become more deeply nested, this knowledge becomes increasingly hard to
acquire.

The purpose of this paper is not to give a detailed explanation of how to
implement a finite element algorithm in an object-oriented language, but to
explain why you should consider doing so. It will show that taking an object-
oriented approach to finite element code development has significant
advantages and, in particular, allows rapid program development through code
sharing and re-use. The main disadvantage is that poor design early in the
development process can be hard to correct later.

This paper is based on work first presented at the 10th International Conference for Numerical
Methods in Thermal Problems, Swansea, July 1997 (Cross et al., 1997; Masters et al., 1997).
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The next section will report on some of the uses that have been made of
object-oriented techniques in numerical methods programming. Section 3 will
briefly explain some of the basic concepts of object-oriented programming,
while Section 4 will explain some aspects in more detail, and will show how
they relate to finite element programming by using, as an example, a heat
transfer and solidification program written in C++.

2. Uses of object-oriented techniques in numerical methods
One of the earliest ways in which object-oriented methods have been used in
numerical methods programming is in the graphical generation and
visualisation of data. The windows, buttons and scroll bars found on any
graphical user interface form natural ``objects'', and geometric primitives such
as tetrahedra, cubes and cylinders on can be thought of in the same way. An
increasing number of object-oriented packages have been written specifically
for finite element data, an example of which is FEView (Zheng et al., 1995).

Probably the most common use of object-oriented techniques is in the
development of the ubiquitous ``integrated packages'' ± along the authors' own
office corridor there are at least three[1,2] (Marchant et al., 1996). In most cases
these packages are graphical interfaces designed to simplify the assembly of
data files and to monitor the running of otherwise standard sequential finite
element codes. Whilst not appealing to the object-oriented purist, these systems
often use object-oriented ideas (sometimes without the authors even realising
it!) and they are a very practical means of making finite element codes more
usable and less error prone. One advantage of using an object-oriented
language for the analysis code as well as the graphics code is that it opens up
the prospect of much more integrated, ``integrated packages''. Several
researchers (Shah et al., 1994; Miller et al., 1995; Ju and Hosain, 1996; Bettig and
Han, 1996) are currently exploring this exciting new area.

A need common to many areas of numerical computing is to manipulate
vectors and matrices. Scholtz (1992) explains very clearly how the four basic
operators (add/subtract, multiply/divide) can be re-programmed for such data
types in C++, while Zeglinski et al. (1994) show a number of further examples.
This is usually termed operator overloading and has the advantage of making
numerical code much more compact and easier to follow. It is a sufficiently
useful concept that it is now a part of Fortran90 (Smith, 1995) and C++
(Stroustrup, 1991) object libraries for matrix manipulation are available
commercially[3].

A further level of abstraction can be achieved by considering symbolic
processing packages such as Mathematica[4] and Matlab[5]. Although these
are used for serious research, they often run slowly in comparison to other
methods and tend to be used primarily for non-computationally demanding
applications. However, Viklund et al. (1992) and Fritzson et al. (1994) produced
their own language, ObjectMath, which is compatible with Mathematica for
symbolic manipulation but which can produce C++ code for fine tuning.
Zimmermann and Eyheramendy (1996) and Eyheramendy and Zimmermann
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(1996a; 1996b) have developed a high level system with a user interface into
which a user can enter a set of governing equations. The program then creates
a new object containing the corresponding numerical model, which can be
slotted into an existing analysis framework.

The design of objects is a core activity in object-oriented finite element
programming, but one in which an accepted wisdom has yet to emerge. Several
strategies have been proposed to describe the inter-relationships between
objects (Mackie, 1992; Zimmermann et al., 1992; Kong and Chen, 1995), with
each author having a different approach. Nevertheless, object-oriented finite
element analyses have been used in a number of application areas including:
stress analysis (Dubois-Pelerin et al., 1992; Dubois-Pelerin and Zimmermann,
1993), hypersonic shock waves (Budge and Peery, 1993), structural dynamics
(Pidaparti and Hudli, 1993), shell structures (Ohtsubo et al., 1993), non-linear
plastic strain (Mentrey and Zimmermann, 1993), electromagnetics (Silva et al.,
1994) and contact problems (Feng, 1995). The application used as an example
later in this paper is a heat and fluid flow program, of which there are few
reported in the literature. Peskin and Hardin (1996) have considered fluid flow
in the context of electroplating, and include a model of the electrochemical
reaction. The authors' own contributions examine solidification problems
(Masters, 1997) and have also developed a version for parallel architectures
(Masters et al., 1997).

3. Object-oriented programming
3.1 Overview
An object-oriented program is a collection of intelligent, interacting objects. An
object can be likened to a data structure with its own built-in procedures (often
called methods). An object is an instance of a class and a class can inherit
features of another class from which it is derived. This means that, once some
basic classes have been designed, new classes can be generated very quickly.
Objects can pass messages to each other, but data can only be manipulated by
the object containing that data. This is known as encapsulation. The object
sending the message is usually called the client. Almost anything can be an
object and designing flexible and powerful classes/objects is the key to
producing successful and re-usable code.

3.2 Objects and classes
The best way to think of an object is as a ``service provider that is alive,
responsible and intelligent'' (Cline and Lomov, 1995). It provides a service to its
clients (the objects that use it) by meeting clearly defined objectives known as a
specification. It is alive because it is able to construct and initialise itself, live a
full and productive life, and take care of its own demise. An object is
responsible because it monitors the integrity of its own data and will not accede
to any request that would violate that integrity. It is intelligent because it is
capable of carrying out the user's instructions without the user needing to
know how those instructions are carried out.
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At the risk of trivialising the profound difference between the object-oriented
and procedural programming paradigms, Figure 1 shows an attempt to explain
it by means of an analogy.

3.3 Encapsulation
An object is an instance of a class and is defined by its attributes (data) and its
methods (functions). All of the attributes and, frequently, some of the methods
are private, that is, they cannot be seen or altered by any other object.
Communication with clients takes place only through public methods, which
must provide all of the services a client might need. This is called encapsulation
and sounds very restrictive but, in fact, most objects need to provide

The Object-Oriented Photocopier

Imagine a university lecturer (a client) seeking to photocopy some course notes
(process some data). In a procedural world the photocopier is called a function. It
does its job correctly but without thinking, and it is up to the lecturer to collate and
arrange the notes, take them to the copier, pass them through the machine and
distribute the resulting copies to the students. In an object-oriented world the
photocopying machine has a human operator and is called an object. The lecturer
can simply instruct the operator to provide the students with the notes, knowing that
the operator accepts responsibility for the job and will ensure that it is done correctly
or, at worst, return a helpful message. In fact, the operator may elect to use a
different copier or even an off-campus company to produce the copies, but the
lecturer needn’t be concerned with such details.

The disadvantage is that the lecturer must have organised the notes properly in the
first place and placed them with the operator in advance. However, the lecturer need
know nothing of how to operate the photocopier and the various skills needed for
photocopying need reside only with the (one) operator, rather than (many) lecturers.

In a procedural world, the lecturer must know something of how
the photocopier works in order to use it.

In an object-oriented world an operator works the photocopier so the
lecturer doesn’t have to.

Figure 1.
An analogy to explain
the difference between
procedural and object-
oriented philosophies
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surprisingly few external services and, in a finite element program, they are
usually fairly easy to define. The very significant advantage is that the person
designing the class can create and test objects in isolation, safe in the
knowledge that it is impossible to impose unplanned demands on an object or
give it incorrect data. This is shown graphically in Figure 2.

A class is the specification of an object, which is what makes it possible to
separate the purpose of a function (what it does) with its actual implementation
(how it does it). For example, a mesh object will probably contain a method to
read in a mesh from a file. All the client needs to know is that there is a method
called readmesh ( ) that will perform that task. The client does not need to
know how it does it, how many nodes and elements there are, what order they
are in, or even how the program stores the data after it has been read. It is even
quite possible to re-code parts of a class at a later date (to change the way the
data is stored perhaps) without the client code needing to be re-compiled.

3.4 Inheritance
When one class is derived from another one, it inherits all of the attributes and
methods of that class. The derived class or subclass can also have additional
attributes and methods, and it can redefine those that are not appropriate. In a
procedural language a function copied and edited by the programmer also
``inherits'' most of the properties of the original. However, once altered it is
generally no longer fit for its original purpose, resulting in two similar but
independent functions. Inheritance is a formal and controllable way of
developing classes stage-by-stage, while still being able to use any of the
intermediate versions.

3.5 Polymorphism
Three things identify an object-oriented method (function); its name, the object
it is attached to and the data passed to it. It is, therefore, possible for functions

DATA &
FUNCTIONS

INSTRUCTIONS

REQUESTS FOR
INFORMATION

Figure 2.
An object is protected
by only being able to

provide services through
its public functions
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with the same name to exist as long as they are attached to different objects or
accept different arguments. This enables the same client instruction (function
call) to invoke different methods depending on the related object. This is called
polymorphism. It can be applied to operators as well as function calls, in which
case it is known as operator overloading.

4. Implementation in C++ of a heat transfer finite element program
The purpose of this section is to explain how a finite element program can be
written using object-oriented techniques and to give an indication of the
advantages that might accrue from taking such an approach. Since the main
task is to design the classes/objects, that is the aspect we will concentrate on.

The example used is a finite element program written in C++ (by far the
most widely used object-oriented language) to solve heat transfer with
solidification using the enthalpy approach. A detailed appreciation of the
algorithms is given elsewhere (Lewis et al., 1996) but is not necessary for the
purposes of this paper. A limited number of code fragments are given, but the
interested reader is directed to the authors' web site[6] where more detailed
information can be found.

4.1 Classes for finite element analysis
The types of object classes used for finite element modelling fall into two
categories. Mathematical classes such as matrices, vectors and tensors provide
a flexible and high level way of manipulating finite element equations.
Operations such as multiply and divide can be performed using operator
overloading and member functions (methods) can perform inversion,
transposition and other common matrix operations. These have quite a wide
application outside finite element methods and have received more attention as
a result. Geometrical classes are used to describe the problem domain and its
boundary conditions. Examples include element, node, material, boundary and
mesh objects, each of which will have member functions to manipulate data
and perform the analysis. These are largely unique to finite element analysis
and are the ones we shall focus on in the following descriptions.

Time class. This class is a relatively simple one and is a good example to
choose for showing a code fragment. It contains data concerning start and
finish times, timestep sizes and the current time, as well as the methods
required for updating the current time, checking for convergence, adjusting
timestep sizes and so on. In fact it is the only class concerned with the passage
of time. The class definition is as follows:

Line01: class Time{

Line02: protected:

Line03: double start_time; // time parameters

Line04: double runtime;

Line05: double timestep;
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Line06: int step_number;

Line07: double stop_time;

Line08: double alpha;

Line09: int max_iteration s;//non linear parameters

Line10: int max_restarts;

Line11: double tolerance;

Line12: int niter_increas e_timestep;

Line13: int niter_decreas e_timestep;

Line14: double max_timestep;

Line15: double timestep_chan ge_factor;

Line16: int iteration;

Line17: int restart;

Line18: double last_norm;

Line19: double this_norm;

Line20: int do_output;

Line21: int is_mesh_outpu t;

Line22: double last_output_t ime;

Line23: double output_time_i nterval;

Line24:

Line25: public:

Line26: Time(); // constructors

Line27: Time(char* dataFileName) ;

Line28: int stop();

Line29: int output();

Line30: int mesh_output() ;

Line31: int mesh_written( );

Line32: int increment(Mes h_ha& globalmesh);

Line33: double getstepsize() ;

Line34: int write_step_in fo(const int n,FILE *fp);

Line35: int is_step_outpu t();

Line36: void show();

Line37: };

The code fragment is shown largely for the sake of completeness, and a line-by-
line dissection would not be appropriate. However, it can be seen that Lines 3-
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23 contain declarations of parameters that are protected, i.e. they can only be
``seen'' by methods within the same object. Lines 26-36 contain declarations of
public methods that provide the services to other objects.

Element class. Attributes for this class include nodal data, material
properties and shape functions. Anything that is dependent on the element type
is included in this class and, as a result, is used throughout the program ± a fact
reflected in the relatively large number of public methods. These include:

. read_element_ data( ) and write_element _data( ) used
for transferring information to and from file.

. calc_shape_fu nctions( ) used to calculate and store the
appropriate shape functions and their derivatives. The calculation of the
Jacobian matrix is also required, achieved using the function
calc_Jacobian ( ).

. calc_element_ matrix( ) forms the stiffness matrix for the
element.

. calcBC( ) applies flux boundary conditions to one or more element
faces.

. calc_fixedBC( ) applies fixed temperature boundary conditions to
one or more element nodes.

The Element class is a good way to demonstrate the advantages of abstract
data types and inheritance. A finite element code may well offer a choice of
element types and it makes good sense to design for this facility from the start.
One way to do this would be to design an abstract Element class containing
declarations for the methods and attributes likely to be needed by an element
object. The Element class would never itself be used but would provide
features for derived classes such as Element 3 and Element 4 (three- and four-
node elements) to inherit. This inheritance relationship is shown graphically in
Figure 3. A client wishing to use an element object knows that all of the
methods declared in the Element class must be supplied by any class derived
from it. Thus, client code using only those services offered by the Element class
is automatically compatible with any element type derived from it, even those

Figure 3.
How object classes
inherit from abstract
base classes
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not yet written. This means that adding a new element type to an object-
oriented finite element program is a self-contained process involving only the
declaration of the derived element class and the writing of the code that
implements the required functions. The author need know nothing of the client
code and the client code need not even be re-compiled. This is somewhat of a
contrast to the effort involved in adding a new element type to a typical,
procedural finite element program.

Node class. Elements contain nodes and these are contained within a
separate class. The data includes the node number, coordinates and
temperature, while methods mostly deal with file reading and writing and
accessing nodal data.

Material class. An instance of this class would contain all the information
relating to one material and would provide methods to allow other objects to
access that information. These methods can be used to demonstrate some of the
advantages of encapsulation.

The solidification model uses an enthalpy method and the element
calculations require the enthalpy of the material for a given temperature. In
fact, enthalpy is a non-linear material characteristic for the phase change
material and a linear material for the others. However, the element object (the
client) is not interested in whether the material is non-linear or not and certainly
does not want to have to provide code to determine the nature of the element's
material before it can call the correct function. Because the information is
thoroughly encapsulated the client can call the member function
get_enthalpy( temperature) safe in the knowledge that a suitable
technique will automatically have been used to calculate the enthalpy. It could
be said that the Material class has assumed responsibility for ensuring that
only correct material information is released to its clients.

Boundary class. Contains the data required for boundary conditions and all
the methods necessary to apply them. This includes methods for applying non-
uniform and non-linear boundary conditions, which are, again, transparent to
the user.

GaussPoint class. Contains gauss data and methods for providing an element
with appropriate shape functions and derivatives.

Mesh class. This class contains data and methods that concern the mesh as a
global entity, rather than at the element or node level. Thus, it holds the
number of elements and nodes and maintains the global lists of elements and
nodes. Its methods perform the following key tasks:

. file input/output (using node and element methods);

. organising the construction (and destruction) of the appropriate number
of element and node objects;

. assembling the global stiffness matrix; and

. solving the global stiffness matrix.
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4.2 The main ( ) routine
Every complete computer program needs a procedure that is activated first. In
FORTRAN it consists of the code that is not part of a subroutine or function, in
C++ it is a method or function called main() . The main() method in our
example finite element program appears as follows.

Line01: #include "classdef.h" //object definitio ns

Line02:

Line03: main(int argc, char **argv)

Line04: {

Line05: Mesh globalmesh; //create objects

Line06: SparseMatrix global_ma trix;

Line07: Time time;

Line08: Material materials;

Line09: Gauss gpdata;

Line10: File file;

Line11: Vector globalRHS ();

Line12:

Line13: file.openfile s(); //preprocessi ng

Line14: globalmesh.re admeshdata(fil e);

Line15: globalmesh.as sign_materials (materials);

Line16: globalmesh.re ad_boundary_da ta(file);

Line17: global_matrix .allocate_memo ry(globalmesh );

Line18: globalmesh.pr eprocessor(mat erials,gpdata );

Line19:

Line20: do //main loop

Line21: {

Line22: globalmesh.fo rm_global_matr ix

Line23: ( t i me, mat er i al s, gpdat a, gl obal _mat r i x, gl obal RHS) ;

Line24: globalmesh.so lver(global_ma trix,globalRH S);

Line25: time.incremen t(globalmesh);

Line26: globalmesh.wr ite_results(ti me,file);

Line27: }

Line28: while( !time.sto p(globalmesh) );

Line29: }
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On Line 1 the header files containing the class definitions are included, while
Line 3 marks the beginning of the main() function. Lines 5-11 contain the
declarations in which objects are instantiated from classes which, in plain
English, means that globalmesh is an object of class Mesh and so on. Lines
12-18 contain all the commands required to set up the solution process, while
Lines 22-26 contain the statements that form the main iterative loop of the
process. Line 29 marks the end of the main() function.

The syntax is relatively straightforward and can be deduced even by the
reader for whom C++ is unfamiliar. Taking Line 24 as an example,
globalmesh is the object, solver is the function, and global_ma trix
and globalRHS are the two objects being passed to the function.

The diagram in Figure 4 represents the main structure of the program in a
graphical form and shows the relationships between the objects.

5. Conclusions
This paper has attempted to show that there is much to be gained by taking an
object-oriented approach to writing finite element software. As usual, however,
there are disadvantages too.

The hardest aspect of object-oriented programming is designing classes,
which, unfortunately, is done right at the start of the development process,
before any coding takes place. Designing effective classes requires a working
knowledge of the chosen language and a thorough understanding of the finite
element method. Designing really good classes requires, in addition, a thorough
understanding of the object-oriented concept, and little flair.

In addition, to continue the photocopier analogy, if it was just one lecturer
who needed notes copied, and copied only once at that, it probably wouldn't be
worthwhile employing and training an operator for the machine. Likewise,
developing a set of C++ classes for a relatively small, one-off computer
program is not a very effective use of resources.

If the patterns of development of numerical analysis programs developed
using sequential and object-oriented methods could be plotted, they might look
something like the graph shown in Figure 5. For a sequential approach,
research effort yields immediate benefits, but sustained or large group effort
often yields diminishing returns. For an object-oriented approach, few gains are
apparent initially but later, rapid and sustainable growth can be achieved as
researchers build fruitfully upon what their colleagues have done before.

In summary, if a planned finite element program will have any of the
following features:

. consist of more than, say, 5,000 lines of code;

. have complex logical structures;

. involve more than one developer;

. are likely to require modification at any point in the future;
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. contain any re-usable parts;

. need to be integrated with graphical user interfaces;

. need to be especially robust or error tolerant;

then an object-oriented approach is worthy of serious consideration.

Start

Mesh:
Read data

Matrix:
allocate memory

Mesh:
Preprocessor

Mesh:
form global matrix

Element:
calc shape functions

Element:
read data File

Node:
read data File

Mesh

Gauss Point

Node

Node

Node

Material

Element:
calc element matrix

Matrix_Sparse:
put element matrix

Matrix Sparse

GMRES:
solver

RHS Vector

Mesh:
solver

Time:
increment

Node:
write data

Mesh:
output

File

Element:
write data File

Time:
stop?

RHS Vector:
put element vector

Figure 4.
Diagram showing the
relationships between
objects in a finite
element heat transfer
program
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Notes

1. Merlin Castings Analysis Software at http://www.swan.ac.uk/civeng/research/casting/
merlin/index.html

2. FIDO, part of the ADOPT group at http://www.swan.ac.uk/civeng/Research/adopt/fido/
index.html

3. The Math.h++ library from http://www.roguewave.com

4. Wolfram Research at http://www.wri.com

5. http://www.mathworks.com

6. http://www.swan.ac.uk/mecheng/sofer/
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